Category Archives: DataBase Marketing

Book: Managing Customers as Investments

Are You Spending More on Your Customers than They are Really Worth? authors Gupta and Lehmann ask.

Based on my experience, Why Should We Care? is the return question.  Lots of companies apparently do not care, at least not yet.  But someday these companies will “hit the wall” with the traditional focus on acquiring new customers, and then they will care.  Just a Case of History Repeating, don’t ya know.

When I published the 3rd edition of my book, I was pretty sure the business world had finally made it past “Why Should We Care?” and would be on to “How Do We Do This?”.  Wrong, as Ron constantly remind me.  Before the book reviewed below was published, I was using what I called the “portfolio approach to managing customers” idea to set up the Current Value / Potential Value model.  Spent an entire chapter on the idea.  Apparently, that was not quite enough to answer the “Why Should We Care” question.  My bad.  Turns out the same idea is worthy of an entire book.  Sigh…

So for those of you who are more interested in the “Why Should We Care?” (90% of You?) as opposed to the tactical “How Do We Do This?” presented in the Measuring Engagement Series, I give you the following book:

This is a 6 Chapter, no nonsense, 165 page book that is heavily annotated with the kinds of “proof” you need to potentially get your Boss to care about this topic.  I mean, the boss-person can just hit the EndNotes (another 33 pages with the Appendix) and find out how the theories, formulas, and examples in this book have all been well documented by a slew of hard core academics and Consultainers alike.  These references to various studies, books, papers, and so on probably have more impact than say, sending an e-mail to the boss titled “Interesting Stuff” with a link to my blog…

The book is easy to read and shoves all the “Math” into the Appendix so whether you’re using the right or left brain you can follow right along – ignore the math and just Grok the pictures, or get right down into full-blown proofs with your Calculus shoes on.  Have it your way, as they say.

Just look at these Chapter Titles:

1.  Customers are Assets – no argument there from me.  Want definitive proof?  Here it is.

2.  The Value of A Customer – do you know the value of yours?  Here is an easy – and I mean easy – way to estimate this value.  Call it Lifetime Value “Light” –  it’s way better than what you have now, I bet.

3.  Customer-Based Strategy – Oh, to develop Strategy and actually do something based on the Value of the Customer, as opposed to whining about how they are “in control”.  This is the best chapter in the book.  Customers can only take control if you give it to them, you know.  And that’s a Strategy problem.

4.  Customer-Based Valuation – they’re talking firm valuation here, for the purposes of acquiring companies or selling them.  As I said before, Wall Street uses the Current Value / Potential Value Model.

5.  Customer-Based Planning – as in building Customer Value right into the Business Plan, so the execution is rock solid.

6.  Customer-Based Organization – sure, the tough one.  How you make it all work in the org.  A bit of the Analytical Culture thing.

The Gupta and Lehmann book is great because it takes what I’ve learned through 20 years of “exposure” (Why You Should Care) and explains it in corporate speak, creating links to stock prices and all kind of other good stuff the CFO would really like to hear about, like projecting future sales, estimating the buyout value of the firm, evaluating acquisitions, and so forth.  All from the same kind of customer analysis we just worked through in the Measuring Engagement series.  Really.  Except they hide all the numbers from you – unless you go looking for them.

Oh, and did I mention this info is all well documented by a slew of hard core academics and Consultainers alike?  Seriously though, there are over 120 footnotes that at the very least provide you a library of solid references and case studies on the topic of using customer value data to drive increased profits.

So, if you’re a Marketer trying to create a bridge to Finance, get a copy for your friend over there.  If you’re an analyst trying to get a deeper understanding of why customer analysis matters to the business side, get a copy for yourself.  If all of a sudden you are in charge of “CRM” or “Customer Experience” or whatever they are calling running a business that doesn’t shred its own customers these days, get this book for the sake of your company.  The book really is a great read and might help you make sense of all the disparate and seemingly conflicting marketing and service ideas you read about today.

And while you’re at Amazon, get a guide for the people who will have to turn all this Customer Value Data into Profits for you – mine.

Recency Defines Engagement: Customers

The Measuring Engagement series starts here.  For a clickable index of the 5 part Measuring Engagement series, look here.

The good thing about doing customer analysis as opposed to visitor analysis is that you don’t need a fancy-dancy web analytics set-up to do it.  Most folks will be able to take advantage of the following ideas using some simple queries on the customer database or an export to a spreadsheet.

Last time we addressed the topic of measuring Engagement – and attributing actual Value to it – we were looking at how to predict the effect of Content changes on Revenues using the Current Value / Potential Value visitor segmentation model.  This time, we tackle the same kind of modeling at the commerce customer (online or offline) level.

Recall that with visitors, we looked at a segmentation using under or over 50 visits for Current Value and Last Visit within 2 months or over 2 months to define Potential Value (Engagement).  With e-commerce customers, the value of a single action (purchase) is generally much greater than the value of the average visit, so it’s worth it to create a finer segmentation because the data is more actionable – and the profit potential much greater.

Here we have the entire customer base of an online retailer in the 4 square Current Value / Potential Value grid we have used previously for Campaigns and Visitors – click on the image to enlarge:

As you can see, the vertical Current Value axis is Frequency of Purchase, with finer divisions for lower Purchase Frequency.  This is because as you move up towards greater Frequency, customer behavior becomes more similar, and you don’t want to have “infinite” segments.  On the lower end, the response behavior is different enough between say, a 2x buyer and a 3x buyer, that the segmentation is useful because the different segments respond differently to the same promotion.  The horizontal Potential Value / Engagement axis is made up of Days since Last Purchase (Recency) blocks of 30 days each out to 120 day Recency where, as with Frequency, the behavior starts to become similar so it’s not worth looking at finer detail.

Of course, you can break the customer base into as many segments as you want on either axis, you just want them to be large enough to be worth taking action on.  Smaller customer base, probably fewer segments is better.  Larger customer base, more segments.  And you can certainly define your actions and divide your Quadrants in any way that makes sense to you – usually based on some kind of testing.  Consider this CV / PV customer map a “default” place to start.

The four colors represent the same Four Quadrants we have been working with throughout this series:

Q1 (Green) is the Rocket fuel customer set – highest Current Value and highest Potential Value – they are best customers (Current Value) who are also the most engaged (Potential Value).  Q2 (Yellow) are newer customers with Low Current Value but are still Engaged and so have high Potential Value; the Blue square within the Yellow region contains brand new customers – a very Recent first purchase.  Q3 (Orange) contains former, dis-Engaged Best customers.  Q4 (Violet) contains the dreck of the customer base – 1x or light buyers that never bought again.  These folks are often created by inappropriate or mis-targeted acquisition campaigns.

Why would you want to do this segmentation?  Well, asked another way, does it make any sense to you that the optimal communication and offer stream would be the same for each of these 4 segments?  Think about it.

Q1 folks love your company and are eager buyers, with high likelihood to purchase again.  Do you want to use a heavy discount approach with these folks, giving up margin you would likely capture anyway?  Instead, how about trying to enagage them across multiple product lines or inviting them to participate in feedback panels or other high engagement activities?  At least you know who you are talking to – as opposed to “random surveys” where you have absolutely no idea who you are getting feedback from.

The Q2 area (Yellow) contains up-and-coming best customers, brand new customers, and customer dreck headed for Q4.  You can tell which is which by just looking at the chart – up and comers are top right of Q2, new customers bottom right of Q2, pre-dreck on the left side of Q2 on the border of Q4.  Do you want to send all these groups the same communication stream and offers?  Really?  Is that approach “optimized”, from a marketing perspective?

The Q3 (Orange) folks are former best customers.  ‘Nuff said there.  This group requires special communications handling and depending on their Current Value, are worthy of further research.  This is where a lot of your service problems, over-promising on Brand, and unfulfilled customer expectations lie.  Again, since you know exactly who they are, a survey here might be helpful, don’t you think?

The Q4 (Violet) area needs to be turned inside out and viewed by campaign source, product purchased, and so forth.  Why are you creating dreck customers?  Are your offers too strong?  Your featured products creating negative experiences?  Your list sources not really what they claim to be?

I don’t really want to use the word Persona here to describe the differences between customers and the appropriate messages in these four Quadrants, but the idea is similar.  If you can empathize with the customer based on their demonstrated behavior, you are simply going to be a more effective marketer.  This is the edge of the “right message, to the right customer, at the right time” tactical approach.

Further, your response rate for a particular promotion to any one “cell” on this customer map is going to remain fairly consistent over time.  Why?  Because the population in that cell is replaced by customers with the same behavioral profile each month.

Here’s how it works.  If you think about it, there is a non-stop process of customer migration across the map from right to left through the columns each month.  If a customer makes a purchase, they immediately move back to the right-most column and may move up a row.  Then, customers start to move across to the left again each month.  This pattern is highly visual and represents the LifeCycle of the customer.

Your job as a marketer is to make sure customers don’t march too far to the left, losing Potential Value as they move.  You try to re-engage them with each promotion and if they respond, the customer jumps back to the right and possibly up a row – increasing both their Current and Potential Value.  The most profitable campaign for each customer is defined by which cell the customer resides in at the time the campaign is dropped.  So you can still do a “monthly” newsletter, for example, but to maximize profits, the content / offers for each customer would be defined by what cell the customer is in at the drop point.

While this might sound complex, the good news is that the customers in any cell as a group generally respond at the same level for the same offer every time.  So once you figure out what the optimal campaign is for a cell, it doesn’t really change much over time, unless you further sub-segment (example below).  As customers move through the cells, they are generally exposed to a lot of different campaigns (whatever is highest ROI for the cell) which maximizes the chance of response and reduces promotional burn-out.

For those of you with a programming eye on this, I think you can see how this campaign process could be easily automated because the cells are well defined numerically – if customer has 3 purchases and no purchase in past 2 months, send “Campaign X”, if customer has 3 purchases and no purchase in past 3 months send Campaign “Y”, etc.  This creates a automated stream of “right message, to the right customer, at the right time” communications that are tailored to the actual behavior of the customer.

So how do you act on this info?  Let’s say I have a group of customers who have just passed into Q3 from Q1 – these are best customers who are dis-Engaging.  I know exactly who and how many there are – they are under the column “91 – 120 days” in the Orange Q3 Quadrant.  There are 844 of them (97 + 312 + 435).  What am I going to say to them, based on what I know of their value and current behavior?  How much am I willing to invest to keep them Engaged?  That’s the “drive more sales” angle.

The “drive more profits” angle would be to create control groups and test your messaging to this segment as well as the one preceding it (10+ units, 60 – 91 Days) and the one after it (10+ Units, 121-150 Days) and find out where the highest ROI is.  This type of bevahioral targeting is the fundamental driving force behind the Discount Ladder profit optimization technique.

But that’s just the beginning of using this kind of segmentation.  Consider these ideas:

1.  When you kick off a large scale acquisition campaign, you are going to see the Blue square in Q2 “bulge” with all the new customers.  Then, if you run this chart every month, you will see this bulge “pass through” the chart like a rat through a snake.  Will the bulge head up towards Q1, meaning the campaign is creating Best customers?  Will the bulge move to the left towards Q4, meaning you created a lot of dreck customers?  Will the bulge “fork” and parts of it head to different Quadrants, depending on product of purchase or offer taken?

As a marketer or analyst, is it valuable to be able to predict the long-term results of a campaign before it is over?

2.  You say, “Jim, that’s very cool and all, but the powers that be want all our segmentation by product affinity, you know, we customize communications and offers by the previous products purchased.  So we can’t really use this.”

Hmmm.  Let’s put aside whether this product-based segmentation decision makes any sense at all for the time being (the only sale you are willing to accept from the customer is for a specific product or category?), and take a look at how mapping the customer base using Current and Potential Value can help you put some facts behind these kinds of segmentation questions.

Let’s say for simplicity you have two product lines, hardware and software.  Further, let’s say your customer base is the one in the CV / PV model above, which I will show again below for clarity:

All Customers

OK, so let’s say you take this customer base, and run your product affinity segmentation.  Then you map each product segment by customer using the Current Value / Potential Value model, and this is what you get:

Software Segment

Hardware Segment

Note the label on the first map is “Software” and on the second in “Hardware”.  What do these customer maps tell you?

Well, you have about the same number of customers in each segment – 18,500 in Software and 17,534 in Hardware.  But you knew this.  Take a look at the totals along the bottom of the grid, representing the total number of customers in each Recency / Engagement column.  What do you see?

The Software segment has much higher Potential Value / Engagement than the Hardware segment.

If you look at the 61 – 90 day column, you see both the Software and Hardware segment have an equal number of customers.  But the Software segment is clearly much more Engaged than the Hardware segment, as evidenced by higher totals in the columns to the right of the 61-90 day column for Software than Hardware.  Conversely, in the columns to the left of the 61 – 90 day column, the totals for Hardware are higher than Software – these customers are less Engaged.

In other words, even though the gross customer numbers in these segments are close, the composition of the segments is quite different.  Software has a higher number of very engaged Best customers and potential up-and-comers (Q1 and Q2), where Hardware has a higher number of dis-Engaged Best customers and dreck customers (Q3 and Q4).  Further, you can say with certainty that relative to the Hardware segment, the average customer in the Software segment is going to create more value for the company in the Future.

This ought to tell you something about the way you optimize marketing to each segment, and the way you should market within each segment, not to mention something about the products and / or service satisfaction in each segment.

Just by looking at these maps, I can tell you several things:

1.  The response rate for Software campaigns will be consistently higher, over and over, than the response rate to Hardware campaigns – pretty much regardless of what kind of offer you make, as long as the offers are similar.

2.  For the same dollar spent, the Software segment is driving your business, the Hardware segment is dragging it down.  You can either roll with that situation and reinforce it in your communications, or you can try to fix Hardware.  For example, when you choose to feature an item, all else equal, I’d feature Software, because it has the longest customer legs and drives higher repeat purchase.

3.  For the same dollar spent, I would focus more heavily on Software in new customer acquisition Campaigns because this segment generates better, higher value customers for the business.

Now, at this point, I hope something has occurred to you.  That’s right, you could do this same mapping using any customer segmentation scheme you think is meaningful and compare the value of the customer maps.  Compare the results of Campaigns using these customer maps.  Compare organic search versus paid search.  Compare Geography, if you think that is meaningful.  Compare average price points, order sizes, shipping choices, coupon usage, e-mail opens, whatever customer variable you want – and find out which variables drive the highest customer value.

Further, you can use this model across any kind of “action” you want to map – purchases, visits, downloads, blog posts, phone calls, whatever you want.  You can use it to compare customer value across channels, and start building the knowledge you will need to optimize the business in an omni-channel world.

My final point is somewhat abstract but I want you to consider this: What is the value to the business of having a customer value model you can use to:

1.  Objectively measure the value of content or products to a customer segment without inside-company bias

2.  Predict the value of a customer segment to the company in the Future

3.  Drive the allocation of content, design, or marketing spend towards highest ROI

4.  Provide consistent, repeatable campaign targeting results, so you can actually predict response and ROI

5.  Analyze any customer “action” variable, in any channel, across any segmentation scheme

6.  Present customer valuation concepts to Execs and fresh-faced MBA’s alike in a simple to understand format

The same basic model, over and over, to make highly actionable customer decisions with.

Do you think using this model might streamline the marketing decision making process, result in more accurate decisions being made, reduce campaign turn-around time, and result in higher profitability for your company?

As always, comments and questions on the above are appreciated.

The last post in the Measuring Engagement series is here.

Recency Defines Engagement: Visitors

The Measuring Engagement series starts here.  For a clickable index of the 5 part Measuring Engagement series, look here

Last time we addressed the topic of measuring Engagement – and attributing actual Value to it – we were looking at visitors generated by various campaigns.  Here is what the Frequency (average number of visits) and Recency (average days since last visit) look like in a web analytics interface:

Initial Campaign

And here is what the Campaigns, numbered 1 – 16, look like in the Current Value / Potential Value Map:

Quadrant 1 contains campaigns generating visitors with both high Current Value and high Potential Value – these are the campaigns deserving more investment because the visitors created generate highest value to the company now, and have the highest likelihood to generate more value in the future (are the most Engaged).  If you’d like to know more about what metrics drive the Map and how it was created, see here.

Beyond Campaigns, how else can we use the Current Value / Potential Value Map?

Search Phrases

One of the more interesting uses is looking at search phrases as the “campaigns”.  Search marketers, especially PPC folks, are often victims of initial conversion rate-itis, where campaigns are managed and funded based on a short-term conversion rate.  To be fair, often this is a systems integration problem more than anything else – there simply is not enough “visibility” in the out weeks to determine if longer-term conversion to final goal is occurring.  This is common where there is not a clean integration between web analytics and the back-end commerce system, for example.

Using the Customer Value Map with search phrases provides you with a way to imply a future conversion and balance out some of the decision making on short-term conversion.  If you know a certain search phrase is generating visitors who visit Frequently and are still Recent in their visit behavior (Quadrant 1), you can imply this phrase is going to be more profitable than a phrase generating visitors who end up in Quadrant 4.  For an example of this idea in action, see here

Likewise, let’s say you’ve optimized the heck out of all PPC campaigns as far as copy, landing page navigation, etc. and still have a number of phrases that are “breaking even” on an ROI basis.  But some of these break-even campaigns consistently deliver visitors who end up in Quadrant 1.  The last campaigns I would kill are the ones delivering visitors who end up in Quadrant 1, since these visitors have the highest Potential Value.  Kill Quadrant 4’s first, then 3’s, then 2’s to see if you can get where you need to go in the overall ROMI mix.  Then do anything you can (including fishing through databases / logs manually, if need be) to find out if those Quadrant 1’s are really not paying out – I’d bet something is missing, there is a break in the logic / code somewhere that is not giving credit where credit is due.

Navigation / Functionality

Before we get into this area, let’s step back a minute for a global thought. 

This Retention / Engagement analysis stuff may seem oddly strange to you, and if it does, this is probably the reason: what is most important to measure in this area is what does not happen

Think about it.  This is not what you are used to in web analytics (or most other transactional analysis) – you are always focusing on what did happen.  How many visitors, clicks, conversions, etc. happened?  But I ask you this: in terms of Objective / Action, where would you want to take action in the Engagement area, where would the highest payout be?  Right.  Not with the Visitors who are already Engaged, but with those who are becoming less Engaged – where something is not happening.

Keep that in mind as we go through the next section…

Has this ever happened to you?  Your revenue KPI’s start sinking, gradually at first, and then at an increasing rate.  You run around trying to figure out what the problem is – campaigns, changes in natural ranking, competitor activity, whatever.  You’re pulling your hair out because it doesn’t make any sense – everything is tracking “normal”, right?  No changes in the past few days, or even weeks?  Right.  So, what the heck is going on?

Understanding the Volume of traffic by segment to your site is a given.  But what happens to visitor Value segments after their first visit cycle is important as well.  I can’t tell you how many times I have seen people screw themselves over the longer run because they are tracking / optimizing for Current Value rather than both Current and Potential Value.  This is a particularly important idea when you are testing new navigation / functionality and content or products, because it’s not only Campaigns that determine the long-term quality of visitors, but also the site itself.

Here’s an example.  Let’s say you have a simple visitor value segmentation of visitors during the past 12 months that divides the Current Value of Visitors into 2 groups – Frequency over 50 Visits and under 50 Visits.  Further, you divide Potential Value (Engagement) into 2 groups – Recency of Visit within 2 months and over 2 Months ago.  You end up with a 2 x 2 Visitor Value Map that looks something like this, with percentage of the 12 month visitor base listed in each Quadrant:

(Analysts: This simple data set, the first time you present it, may cause some rapid heart beats,  Trust me, most every site looks about like this – the majority of Visitors are in Quadrant 4 – have only visited a few times and have not been back lately.  What’s a few rapid heartbeats among friends anyway??  Gulp…  Hey, you’re an analyst, you’re used to this kind of thing!)

In the chart above, we see 10% of your Visitors are in Q1 (Quadrant 1) – at least 50 visits, Last Visit within 2 Months.  These are the 10% of your Visitors who probably drive the majority of your revenue, the “rocket fuel” visitors.  Q3 is where former best Visitors end up – they have high Frequency / Current Value but have abandoned visiting the site.  If you’re not clear how time since Last Visit date correlates to site abandonment, see here.

Now, let’s say you make a major change in navigation on the site.  Traffic flow to the site remains the same; all the same campaigns are running and everything seems normal.  Hopefully, conversion even goes up (that’s why you redesigned the nav, right?) 

A couple of months later, all of a sudden your revenue per visitor or visit metrics start to slip. 

Thankfully, you have been keeping track of the Percentage of Visitors in each Quadrant of your Customer Value Map over time (phew!) – I wonder what that looks like?  Here is what you find:

The Quadrant 1 Visitor segment (Top Graph, dark line) is shrinking; it has dropped from 10% of the visitor base to 6% or so over a 7 month period.  Doesn’t sound like much, right?  That is, until you remember that these Quad 1 rocket fuel visitors are responsible for a very significant portion of your revenue.  This means, of course, that your revenue per visitor follows the shrinking Quad 1 population right down the curve, as shown in the Bottom graph above.

Think about it.  In terms of gross numbers on the site, you would hardly notice a change like this in any of the “did happen” metrics.  Traffic and conversion, traffic and conversion, all just chugging along, right?  But this change in a small yet powerful group of Visitors significantly affects your Revenue KPI’s – because something did not happen.

Where are these Quad 1 visitors going?  Well, they are becoming dormant – they are moving into Quad 3 – high Frequency but poor Recency (Engagement).  It’s really the only place they can go; most can’t move to Q2 or Q4 because they have high Current Value as they start to move.  So as the population of Q1 shrinks, the population of Q3 rises, as seen in the Top chart.

What you are seeing in the chart above is a tangible visual representation of Best Visitor defection – visits not happening among most Valuable Visitors – that is hard to dispute.  Can you say Engagement Dashboard?

Then why is this happening?  I’d bet on the navigation change.  The problem is, of course, that unless you have a chart like the one above, it will be difficult to prove this idea to anybody, since the drop in the revenue KPI’s lagged the navigation change by such a long time, and all else remains consistent.

The fact is, you changed your “product” – the web site.  For some reason, the site simply does not generate or retain high value Quad 1 visitors like it used to.  Perhaps you pissed off the current Quad 1 Visitors with your changes.  Maybe the parts of the site that create new Quad 1 visitors are now buried in the new navigation, so up-and-coming Best Visitors (Quadrant 2) never find these high value creation areas. 

Did you bury sections of the site considered “low volume” in the navigation?  Better check that idea, because the low volume areas (uniquely targeted areas?) often create the highest value visitors.  You can check on this by running a Current Value / Potential Value Visitor Map for each Content Group – hopefully, before you make any changes to the web site!

Next time we visit this topic, we will look at Customers – those good folks who actually pay money to support a web operation.  If your web analytics tool does not support Visitor Frequency and Recency, you can still use the same Current Value / Potential Value model to manage Engagement through your customer database.

As always, your comments and questions appreciated…

The next post in this series on Measuring Engagement is here.