Tag Archives: Customer State

Difference between RF(M) Scores & LifeCycle Grids?

Jim answers questions from fellow Drillers
(More questions with answers here, Work Overview here, Index of concepts here)

Topic Overview

Hi again folks, Jim Novo here.

Both RF(M) scoring and Lifecycle Grids use the same key predictive metrics – Recency and Frequency. So what’s the difference? RFM is a predictive “snapshot” at a specific point in time; LifeCycle Grids are more like a “movie” designed to be predictive over different periods of time. Another way to think of this: RFM is tactical, LifeCycle Grids are strategic.

You dig? Let’s Drill …


Q:  We’re a telecom company trying to get a handle on customer churn and defection, so we can come up with some programs that will hopefully extend customer participation.  We live in the no contract space, offering a service that’s an add on to wireless phone service, so we don’t have a good indicator as to when the customer relationship might end.

A:  Ah, yes.  Your business model is “built for churn”, as I said on my blog the other day.  The behavior then is more like retail, where independent decisions are made in an ongoing way, deciding again and again to purchase.

Q:  I think your LifeCycle Grids method will show best what is happening to our customers.  If using this method, there doesn’t seem to be any reason to do the RF scoring as customers are just going into cells based on where they fall in the Recency and Frequency spectrum.  Is that correct?  Is there any real  difference between RF scoring and the LifeCycle Grids approach?

A:  You are partially correct, they are two versions of the same idea – both are scoring using Recency and Frequency. The traditional RF(M) scoring where customers are ranked against each other is a “relative” scoring method used primarily for campaigns – it is tactical, an allocation of resources model. 

Continue reading Difference between RF(M) Scores & LifeCycle Grids?

Behavioral versus Demographic Data

Jim answers questions from fellow Drillers
(More questions with answers here, Work Overview here, Index of concepts here)

Topic Overview

Hi again folks, Jim Novo here.

Most businesses want their visitors or customers to “do something” – to take an action of some kind. Trying to drive action, businesses engage in marketing / advertising to reach “audiences” with their message.

These audiences can be quantified in a number of ways using Demographics, Sociographics, and Psychographics for the purpose of “targeting” the campaign. The idea is to make the campaigns more efficient by focusing resources on the types of people thought to be more interested in the product or service.

This is fine. But from psychology and actual practice, we know behavior predicts behavior and demographics do not. So given you want people to engage in a behavior, why would you not use behavior to target campaigns? OK? Let’s do some Drillin’!


Q:  Just finished my print out version of the latest Drilling Down newsletter, and came across what is probably your best quote ever: “You should be really most interested in what people do and why, rather than who they are, because behavior predicts behavior, demographics do not”.

A:  “Print out” version?  Are you implying my newsletter is too long?  You’re not alone… :0

Q:  Man !… I’m having the design department make a big banner and hang it next to the web analytics team cubicles…

A:  My favorite story on this issue: for years we thought the “best buyer demo” at Home Shopping Network was affluent women 50+.  I mean, you hear their voices on TV, you see their letters, you just know, right?  Then we did an enhancement of the database with what was then the most comprehensive and powerful demo package available.  And it didn’t look right, there were “too many young people”.  So we rejected it.

Continue reading Behavioral versus Demographic Data

LTV Not Just About Sales & Marketing Data: Check Service Problem Outcomes

Jim answers questions from fellow Drillers
(More questions with answers here, Work Overview here, Index of concepts here)

Topic Overview

Hi again folks, Jim Novo here.

Often we spend a lot of time talking about analyzing “customer data”, and the implication is we are looking at marketing or sales related information. That may be true for companies just beginning to use customer data; this data often is the easiest to understand and access. But true data-driven organizations have analysts who reach across the silos for data, looking for customer service or operational customer data that can impact the current and potential value of the customer. We have one such example from a Driller today.

Sound good? Then let’s do some Drillin’!


Q:  I work as a management consultant, currently working in a project where my client (Oil & Gas company) is trying to calculate and implement Lifetime Value into one of their businesses.  One of their business units (Industrial Lubricants) sells different kinds of lubricants and services to corporate customers such as Ford, Toyota, BMW, etc.  They have already done some customer profitability analysis and they are currently trying to calculate Lifetime Value.

A:  That’s a pretty interesting place to find a concern for analyzing LTV…

Q:  My questions:

1. What’s the best way to forecast future cash flows in a B2B scenario where models such as RFM are not relevant (Recency and Frequency do not really apply given that their customers have been with them for ages and are often in long-term contracts).  How can I project customer profit over time and how can I estimate the “lifetime” of individual customers?

A:  Well, it’s not that Recency and Frequency don’t apply, they probably apply in a different way.  In most businesses driven by contracts, service is the issue.  So you need to look for Recency and Frequency of “problems”, whatever that might mean in the industry.  I imagine “logistics” is an issue for these businesses – on time delivery, quality, “ease of use” (which could cover many factory / service issues), packaging, and so forth. This can take a lot of research, particularly if there are no “systems” capturing this kind of data. But usually, even in very old line companies, there is some place where this data resides. You just have to find it and get access to it.

Often in an environment like this it is easier to work backwards – first, identify defectors, then look for service issues or changes in behavior that imply service issues – declining order size / Frequency, expanding order Latency (weeks between orders) and so forth.

Continue reading LTV Not Just About Sales & Marketing Data: Check Service Problem Outcomes