Category Archives: Analytical Culture

KFI’s: Key Forecast Indicators

As I said in my presentation at the eMetrics / Marketing Optimization Summit, if you want to get C-Level people to start paying attention to web analytics, you have to get into the business of predicting / forecasting.  Let’s face it, KPI’s are about the past, right?  You don’t know “Performance” until it has already happened.

But C-folks don’t really care much about what has already happened, because they can’t do anything about it.  What they really want to know is what you think will happen.  For example, ideas like “sales pipeline” – a forecast.  If you start forecasting – and you are right – you will get attention from the C-folks pronto.  The web is a great forecasting tool because it’s so frictionless; it tends to provide tangible signals before many other parts of the business.

So: Do you have any KFI’s – Key Forecast Indicators?

I have one for the Lab Store, and it tripped about 2 months ago.  It’s the Unwanted Exotic Index (UEI).

As part of the Lab Store, we run a moderated board where people who want to give up exotic pets can post the availability, and people looking for exotic pets can post requests.  Typically, the ratio of people giving them up to wanting them is about .25 – for every post looking to give an exotic up, there are 4 posts looking to adopt.

A couple of months ago, this ratio starts popping higher.  A couple of weeks ago it hit 1.25 – for every 5 posts looking to give up an exotic there were 4 posts looking to adopt.  The last time something like this happened was prior to the mini-recession of 2004, when the Unwanted Exotic Index tagged 1.0 for a short time.  After this happened, our sales got soft about 2 – 3 months later.

Why is the UEI predictive?  Let’s go through the logic – my logic, anyway!

Keeping certain types of exotic animals can be a strain on a family, both from a time and money perspective.  They can be high maintenance.  On the margin, as the economy gets tougher and people look to manage household budgets, these pets can get some scrutiny – particularly if kids have lost interest or gone off to college.  So more go up for adoption.  At the same time, requests to adopt fall, as families who might have considered an exotic pet put the “owning decision” on hold.  Taken together, these decisions cause the UEI to spike higher.  Both giving up and deciding not to own exotic pets affects Lab Store revenues “expected” in the future.  So the UEI ends up being predictive of future demand.

Makes sense to me.

Now, I’m a pretty good student of macroeconomics and pay attention to many economic indicators, especially predictive ones like the ECRI’s US Weekly Leading Index.  If you’re an analyst, you should too; economic indicators provide context for any analysis you might have to do, and clients often want to understand the impact of these external issues on their business.

As far as the Lab Store specifically, I don’t usually pay much attention to the macroeconomic cycles.  The pet business tends to be insensitive to the economic cycle; people don’t stop caring for pets as the economy wobbles up and down.  That’s why it’s such a good business – if you can find a niche.  So I don’t get too concerned when I see these predictive macroeconomic indexes forecasting a slowing economy.

However, what we have here with our Unwanted Exotic Index is a confirmation of the broader economic forecasting tools that is specific to our exotic pet business.  That makes me sit up and take notice!  Looks like our business is setting up for a repeat of the 2004 slowdown – the last time the UEI spiked like this.  Why is this important?  Because I can do something with this knowledge.  I can re-allocate and re-prioritize based on this knowledge.  For example, I can move from a “grow bigger” to a “grow smarter” mode.

And please note: this KFI has nothing to do with traffic or sales on the web site; traffic and sales are “rear view”.  By the time you see the sales slow down it will be too late to do anything about it.  And that’s why the C-folks don’t care much about web analytics reports.  

You could track an index like the UEI with a web analytics tool, but you’d have to come up with the idea first.  My point is you will probably have to look outside the usual “rear view” metrics to find one with forecasting ability.  I caution you not to substitute a “survey” for a predictive model; people’s opinions are a notoriously lagging indicator.  You’ll be up to your ears in the slowdown before people start turning bearish.

So: Do you have any KFI’s – Key Forecast Indicators?  Tell us about them. 

If you don’t have any KFI’s, now is the time to start looking for them.  What can you see now that predicts what will happen in the future?  Think about the business, think about the data sources, and put together a bunch of different ideas.  Track them back a couple of years and post them monthly going forward.  You’re bound to find something predictive.  Perhaps something about posting, like the UEI.  Recommendations / comments as a percent of visitors or something like that.

If you’re stuck, start with a simple “engagement” idea – percent visitors / members / customers who visited / logged in / bought in the past 90 days.  If this percentage is falling, so will your business in the next 3 – 6 months.  If your business has a lot of seasonality in it, look to year-over-year comps of the same metric.

If you’ve never played this game before, you won’t have proof your KFI’s work until after the business is in the soup, but you’ll be ready with accurate and actionable KFI’s the next time around!

Marketing Attribution Models

Interesting article in MultiChannel Merchant about sourcing sales across catalog and online using fractional allocation models.  I’m pretty sure “allocation” and “attribution” are really different concepts, though they seem to be used interchangeably right now.  Let’s just say from reading the article allocation sounds more like a gut feel thing and attribution, from my experience, implies the use of a mathematical model of some kind.

I know Kevin rails against a lot of the so-called matchback analysis done in catalog and I have to agree with him; that practice is a whole lot more like allocation then attribution in my book, particularly when it is pretty easy to measure the real source from a lift in demand perspective by using control groups.  Take a random sample of the catalog target group, exclude it from the mailing, and compare the purchase behavior in this group with those customers who get the catalog over some time period.  That should give you an idea of what the incremental (not cannibalized) demand from catalog is – just look at gross sales per customer.  We did this at HSN for every promotion, since the TV was “always on” and creating demand by itself.

So does a web site.

Just because someone was mailed a catalog and then at some point later on ordered from a web site does not mean they ordered because they received the catalog; heck, you don’t even know for sure if they even received the catalog – as anyone who has used seeded lists knows.  And just because someone was exposed to an ad online doesn’t mean the ad had anything to do with a subsequent online order – even if you believe in view-through.

Anyway, I see lots of people doing what I would call allocation rather than attribution in the web analytics space, and when Jacques Warren asked me about this topic the other day, I decided it might make a good post.

You have to understand this same discussion has been going on at least 25 years already in offline, so there is a ton of history in terms of best practices and real experience behind the approach many folks favor.  And there is a twist to the online version I don’t think many folks are considering.  So for what it’s worth, here’s my take…

For most folks, the simplest and most reliable way to attribute demand is to choose either first campaign or last campaign and stick to it.  The words simplest and reliable were chosen very specifically.  For the very few folks who have the right people, the right tools, and the right data, it is possible to build mathematically precise attribution models.  The word precise was also chosen specifically.   I will go into more detail on these choices below after some background.

Choosing first or last campaign for attribution is not ignoring the effects of other campaigns, but simply recognizes you cannot measure these effects accurately, and to create any “allocation model” will be an exercise in navel gazing.

Unfortunately, a lot of this kind of thing goes on in web analytics – instead of admitting something can’t be measured accurately, folks substitute a “model” which is worse than admitting the accuracy problem, because now you are saying you have a “measurement” when you don’t.  People sit around with a web analytics report, and say, “Well, the visitor saw the PPC ad, then they did an organic search, then they saw a banner, so we will give 1/3 of the sales credit to each” or worse, “we will allocate the credit for sales based on what we spend on each exposure”.

This approach is worse then having no model at all, because I often see these models used improperly, (for example) to “justify budget” – if you allocate a share of responsibility for outcome to PPC, then you get to keep a budget that would otherwise be “optimized” away.  A similar argument is being made by a few of the folks in the MultiChannel Merchant article above to justify catalog spend.

This is nuts, in my opinion.

I believe the core analytical culture problem at work here (if you are interested) is this:

Difference between Accuracy and Precision
http://en.wikipedia.org/wiki/Accuracy

I’d argue that given a choice, it’s more important to be precise than accurate – reproducibility is more important (especially to management) than getting the exact number right.  Reproducibility is, after all, at the core of the scientific testing method, isn’t it?  If you can’t repeat the test and get the same results, you don’t have a valid hypothesis.

And given the data stream web analytics folks are working with – among the dirtiest data around in terms of accuracy – then why would people spend so much time trying to build an “accurate” model?  Better to be precise – always using first campaign or last campaign – than to create the illusion of accuracy with an allocation model that is largely made up from thin air.

When I make the statement above, I’m excluding a team of Ph.D. level statisticians with the best tools and data scrubbing developing the model, though I suspect only a handful of companies doing these models actually fit that description.  For the vast majority of companies, the principle of Occam’s Razor rules here; what I want is reliability and stability; every time I do X, I get Y – even if I don’t know exactly (accurately) how I get Y from X.

Ask yourself if that level of accuracy really matters – if every time I put in $1 I get back $3, over and over, does it matter specifically and totally accurately exactly how that happens?

Whether to use first or last campaign is a matter of philosophy / culture and not one of measurement.  If you believe that in general, the visitor / customer mindset is created by exposure or interaction to the first campaign, and that without this favorable context none of the subsequent campaigns would be very effective, then use first campaign.

This is generally my view and the view of many offline direct marketing folks I know.  Here is why.  The real “leverage” in acquisition campaigns is the first campaign – the first campaign has the hardest job, if you will – so if you are going to optimize, the biggest bang for the buck is in optimizing first campaign, where if you get it wrong, all the rest of the campaigns are negatively affected.  This is the “leverage” part of the idea; on any campaign other than first, you can’t make a statement like this.  So it follows that every campaign should be optimized as “first campaign”, since you don’t normally control which campaign will be seen first.

Some believe that the sale or visit would not have occurred if the last campaign was not effective, and all other campaigns are just “prep” for that campaign to be successful.  Perhaps true, but it doesn’t fit my model of the world – unless you know that first campaign sucks.  If you know that, then why wouldn’t you fix it or kill it, for heaven’s sake?

All of the above said, if you have the chops, the data, and the tools, you can produce attribution models that will provide direction on “weighting” the effect of different campaigns.  These “marketing mix” models are used all the time offline, and are usually the product of high level statistical models.   By the way, they’re not generally accurate, but they are precise.  I do X, I get Y.

You can produce a similar kind of information through very tightly testing using control groups, but that’s not much help for acquisition because you usually can’t get your hands on a good control group.  So for acquisition you are left with trying to synch time periods and doing sequential or layered testing.

For example, in June we are going to kill all the AdSense advertising and see what happens to our AdWords advertising – what happens to impressions, CTR, conversion, etc.  Then in July we will kick AdSense on again and see what happens to the same variables, along with tracking as best we can any overlapping exposures.

Then given this info, we decide about allocation using the human brain and database marketing experience.

This approach is not accurate, but I’d rather be precise and “directionally right” then accurate and be absolutely wrong, if you know what I mean.  This test approach should give you directional results if executed correctly – the spread for the AdSense OFF / ON test results should be healthy, and you should be able to repeat the test result with some consistency.

Bottom line – it doesn’t really matter exactly what is happening, does it?  Do you need an accurate accounting of the individual effects of each campaign in a multiple campaign sequence?  No.  What you need is a precise (reliable and reproducible) way to understand the final outcome of the marketing mix.

Even if you think you have an accurate accounting of the various campaign contributions, what makes you think you can get that with data as dirty as web data is?  Despite the attempt at accuracy, all you have to do is think through cookies, multiple computers, systems issues, and web architecture itself to understand that after all that work, you still don’t have an accurate result.

Hopefully it is more precise than simply using first campaign.

Thoughts from you on this topic?  I know there are at least two “marketing mix” folks on the feed…

One (Customer) Number

Ron’s post Why Do Marketer’s Test? reminded me of an incident that keeps repeating itself. 

The presentation I do as part of the Web Analytics BaseCamp includes a section on the importance of measuring marketing success at the customer level as opposed to the campaign level.  Then I get this question: “If you were to measure just “one customer number” what would that be? 

Putting aside all the reasons why measuring one customer metric is a faulty approach for the moment, I reply “Percent Active”, meaning:

What percent of customers have initiated some kind of transaction with you in the past 12 months, or 24 months if you are highly seasonal?  Higher percentage is better.

Initiated being the key concept.  Just because someone is “balance active” or is receiving a statement doesn’t mean they are “Active”, or if you prefer, “Engaged”.  And for some businesses, for example utilities or help desks, a lower percentage will be better – the lower the percentage of customers who have initiated a trouble call or a billing problem, the better.  “Transaction” can be most anything, define it for your business – what generates profit or cost for you?  That’s a good place to start, among other things like inquiries and so forth.  Adjust for your business, keep it simple. 

If you don’t sell anything, consider shortening the 12 month window.  If you are a highly interactive business and depend on that interactivity as a business model (MySpace, Facebook) consider using 3 months.

It is truly amazing to me how many folks don’t know what this number is for their business.  And often, truly shocking to them when they find out what the number is.  I have seen their faces.

This number is so simple to calculate and track, and simple to measure success against, why don’t people have it?  It’s a very powerful predictor of the future health of a business.  It’s like a searchlight showing you the way, giving you the head’s up when things are not right in customer land.  All this crap about being customer centric and not one number to fly by, it’s really pretty sad.

All I can conclude is folks simply don’t want to know what the number is.  Am I wrong? 

Why don’t you know this number for your business, or why doesn’t your boss care about this number?  I want to hear all the excuses and have a list of them right here so we can refer to them in the future!