Tag Archives: Customer State

LTV, RFM, LifeCycles – the Framework

Jim answers questions from fellow Drillers
(More questions with answers here, Work Overview here, Index of concepts here)


Q: I visited your website because I am trying to understand how to develop a customer LifeTime Value model for the company that I work at.  The reason is we are looking at LTV as a way to standardize the ROI measurement of different customer programs.

Not all of these programs are Marketing, some are Service, and some could be considered “Operations”.  But they all touch the customer, so we were thinking changes in customer value might be a common way to measure and compare the success of these programs.

A: Absolutely!  I just answered a question very much like this the other day, it’s great that people are becoming interested in customer value as the cross-enterprise common denominator for understanding success in any customer program!

If I am the CEO, I control dollars I can invest. How do I decide where budget is best invested if every silo uses different metrics to prove success?  And even worse, different metrics for success within the same silo?

By establishing changes in customer value as the platform for all customer-related programs to be measured against, everyone is on an equal footing and can “fight” fairly for their share of the budget (or testing?) pie.  By using controlled testing, customers can be exposed to different treatments and lift in value can be compared on an apples to apples basis – even if you are comparing the effect of a Marketing Campaign to changes in the Service Center.

Continue reading LTV, RFM, LifeCycles – the Framework

Control Groups in Small Populations

Jim answers questions from fellow Drillers
(More questions with answers here, Work Overview here, Index of concepts here)


Q: Thank you for your recent article about Control Groups.  Our organization launched an online distance learning program this past August, and I’ve just completed some student behavior analysis for this past semester.

Using weekly RF-Scores based on Recently and Frequently they’ve logged in to courses within the previous three weeks, I’m able to assess their “Risk Level”– how likely they are to stop using the program.  We had a percentage who discontinued the program, but in retrospect, their login behavior and changes in their login behavior gave strong indication they were having trouble before they completely stopped using it.

A: Fantastic!  I have spoken with numerous online educators about this application of Recency – Frequency modeling, as well online research subscriptions, a similar behavioral model.  All reported great results predicting student / subscriber defection rates.

Q: I’m preparing to propose a program for the upcoming semester where we contact students by email and / or phone when their login behavior gives indication that they’re having trouble.  My hope is that by proactively contacting these students, we can resolve issues or provide assistance before things escalate to the point they defect completely.

A: Absolutely, the yield (% students / revenue retained) on a project like this should be excellent.  Plus, you will end up learning a lot about “why”, which will lead to better executions of the “potential dropout” program the more you test it.

Continue reading Control Groups in Small Populations

Acting on Buyer Engagement

Over the years I’ve argued that there is a single, easy to track metric for buyer engagement – Recency.  Though you can develop really complex models for purchase likelihood, just knowing “weeks since last purchase” gets you a long way to understanding how to optimize Marketing and Service programs for profit.

Which brings me to the latest Marketing Science article I have reviewed for the Web Analytics Association, Dynamic Customer Management and the Value of One-to-One Marketing, where the researchers find “customized promotions yield large increases in revenue and profits relative to uniform promotion policies”.  And what variable is most effective when customizing promotions?

The researchers took 56 weeks of purchase behavior from an online store, and used the first 50 weeks to construct a predictive model of purchase behavior.   Inputs to the model included Price, presence of Banner Ads, 3 types of promotions, order sizes, number of orders, merchandise category, demographics, and weeks since last purchase (Recency).

The last 6 weeks of data were used to test the predictive power of the model, and the answer to which variable is most predictive of purchase is displayed in the chart below, click to enlarge:

Weeks since last purchase dominated the predictive power of the model, controlling not only the Natural purchase rate (labeled Baseline in chart above, people who received no promotions) but the response to all three different types of promotion.

Continue reading Acting on Buyer Engagement