Category Archives: Measuring Engagement

Freemium Customer Conversion

Jim answers questions from fellow Drillers
(More questions with answers here, Work Overview here, Index of concepts here)


Q: I was wondering if you’ve done any work with, or given thought to, companies who have a cloud based Freemium business model?

Should they be tracking usage (or anything) at the free level?  Should they be tracking usage at the paid level?  I’m sure defection rates are a big problem, but I’m wondering how many focus on engagement thru mass marketing versus trying to keep what they’ve got, or influence the free users to make the leap to paid.  Any thoughts on this?  Maybe you could do a blog post on it.  It seems like a good fit with your brand of analysis but I’m just starting to think it through…

A: I just finished an analysis that’s a good example of this problem.  Behavior during the Freemium period can predict who is highly likely to become a paying customer, who will need marketing efforts like additional sampling / package discounts, and who will not become a customer no matter what you do.

Continue reading Freemium Customer Conversion

Segmentation by LTD & LifeCycle

Jim answers questions from fellow Drillers
(More questions with answers here, Work Overview here, Index of concepts here)


Q: One of the first things I am doing in my new job is to identify the Customer Lifecycle pattern – how many periods (month, year) will it be before a customer is likely buy again.  In enterprise software industry, where software cost easily 6 figures, # of years is a reasonable time frame.

A: Yes, one would assume this.  But these notions would most likely be based on a feeling of the “average” behavior, and on average, it probably does take a long time.

What is not known is this:  if the “average” is composed of short-cycle and long-cycle buyers, who are the short cycle buyers, and what are they like?  What industry SIC code, for example?  And can we get more of them, or at least focus more resources on them, if they are the most profitable?  So the challenge is not only to look for the “average”, but then understand how this average is composed.  If you can break down the average by industry, or by salesperson, for example, this might be highly directional information.

Q: From my internal analysis, however, I discerned from the sales figures something quite counterintuitive – the period between first and next sale is much shorter than I would have thought for the SW industry in general.

Continue reading Segmentation by LTD & LifeCycle

LTV, RFM, LifeCycles – the Framework

Jim answers questions from fellow Drillers
(More questions with answers here, Work Overview here, Index of concepts here)


Q: I visited your website because I am trying to understand how to develop a customer LifeTime Value model for the company that I work at.  The reason is we are looking at LTV as a way to standardize the ROI measurement of different customer programs.

Not all of these programs are Marketing, some are Service, and some could be considered “Operations”.  But they all touch the customer, so we were thinking changes in customer value might be a common way to measure and compare the success of these programs.

A: Absolutely!  I just answered a question very much like this the other day, it’s great that people are becoming interested in customer value as the cross-enterprise common denominator for understanding success in any customer program!

If I am the CEO, I control dollars I can invest. How do I decide where budget is best invested if every silo uses different metrics to prove success?  And even worse, different metrics for success within the same silo?

By establishing changes in customer value as the platform for all customer-related programs to be measured against, everyone is on an equal footing and can “fight” fairly for their share of the budget (or testing?) pie.  By using controlled testing, customers can be exposed to different treatments and lift in value can be compared on an apples to apples basis – even if you are comparing the effect of a Marketing Campaign to changes in the Service Center.

Continue reading LTV, RFM, LifeCycles – the Framework