Category Archives: Marketing thru Operations

Problems Calculating Retention Rate

Jim answers questions from fellow Drillers
(More questions with answers here, Work Overview here, Index of concepts here)

Topic Overview

Hi again folks, Jim Novo here.

What is your customer retention rate? Well, that kinda depends on how you define the customer. Have you had an internal discussion, and more importantly, solidified agreement across divisions / functions on the definition of an (active?) customer? Please do.

For example, is someone who hasn’t interacted with your company in any way for over 5 years still a customer? You see, if you don’t specifically define a customer, then you can’t have discussions around topics like reactivation, retention, Lifetime Value (LTV) and so forth. Where to start? With segmentation. Create segments of similar customers, then try to decide which segments are still customers; this exercise will get you going down the right track. The Drillin’?


Q:  Seasonality has great effects on customers’ purchasing activities in the retailing industry, as you may easily understand.

A:  Yes…

Q:  Furthermore, what you call Latency has also great effects on their purchasing activities, (I mean, for example, the customer who purchased a coat in one winter season are not expected to purchase another until the next winter season and so forth.)

A:  Yes, but you are profiling customers, not products, right?  The customer who bought the coat may also buy a dress, shoes, pants in other seasons?  Your approach so far sounds a bit too product centric…

Q:  Here is the problem, how these issues of seasonality and Latency must be taken into consideration for calculating retention rate?

A:  Well, you can take it into account or not, depending on your objectives.  What is the objective of the analysis?  If the objective means you should take these issues into account, then you probably should segment the customer base to do so.

Continue reading Problems Calculating Retention Rate

Behavioral versus Demographic Data

Jim answers questions from fellow Drillers
(More questions with answers here, Work Overview here, Index of concepts here)

Topic Overview

Hi again folks, Jim Novo here.

Most businesses want their visitors or customers to “do something” – to take an action of some kind. Trying to drive action, businesses engage in marketing / advertising to reach “audiences” with their message.

These audiences can be quantified in a number of ways using Demographics, Sociographics, and Psychographics for the purpose of “targeting” the campaign. The idea is to make the campaigns more efficient by focusing resources on the types of people thought to be more interested in the product or service.

This is fine. But from psychology and actual practice, we know behavior predicts behavior and demographics do not. So given you want people to engage in a behavior, why would you not use behavior to target campaigns? OK? Let’s do some Drillin’!


Q:  Just finished my print out version of the latest Drilling Down newsletter, and came across what is probably your best quote ever: “You should be really most interested in what people do and why, rather than who they are, because behavior predicts behavior, demographics do not”.

A:  “Print out” version?  Are you implying my newsletter is too long?  You’re not alone… :0

Q:  Man !… I’m having the design department make a big banner and hang it next to the web analytics team cubicles…

A:  My favorite story on this issue: for years we thought the “best buyer demo” at Home Shopping Network was affluent women 50+.  I mean, you hear their voices on TV, you see their letters, you just know, right?  Then we did an enhancement of the database with what was then the most comprehensive and powerful demo package available.  And it didn’t look right, there were “too many young people”.  So we rejected it.

Continue reading Behavioral versus Demographic Data

LTV Not Just About Sales & Marketing Data: Check Service Problem Outcomes

Jim answers questions from fellow Drillers
(More questions with answers here, Work Overview here, Index of concepts here)

Topic Overview

Hi again folks, Jim Novo here.

Often we spend a lot of time talking about analyzing “customer data”, and the implication is we are looking at marketing or sales related information. That may be true for companies just beginning to use customer data; this data often is the easiest to understand and access. But true data-driven organizations have analysts who reach across the silos for data, looking for customer service or operational customer data that can impact the current and potential value of the customer. We have one such example from a Driller today.

Sound good? Then let’s do some Drillin’!


Q:  I work as a management consultant, currently working in a project where my client (Oil & Gas company) is trying to calculate and implement Lifetime Value into one of their businesses.  One of their business units (Industrial Lubricants) sells different kinds of lubricants and services to corporate customers such as Ford, Toyota, BMW, etc.  They have already done some customer profitability analysis and they are currently trying to calculate Lifetime Value.

A:  That’s a pretty interesting place to find a concern for analyzing LTV…

Q:  My questions:

1. What’s the best way to forecast future cash flows in a B2B scenario where models such as RFM are not relevant (Recency and Frequency do not really apply given that their customers have been with them for ages and are often in long-term contracts).  How can I project customer profit over time and how can I estimate the “lifetime” of individual customers?

A:  Well, it’s not that Recency and Frequency don’t apply, they probably apply in a different way.  In most businesses driven by contracts, service is the issue.  So you need to look for Recency and Frequency of “problems”, whatever that might mean in the industry.  I imagine “logistics” is an issue for these businesses – on time delivery, quality, “ease of use” (which could cover many factory / service issues), packaging, and so forth. This can take a lot of research, particularly if there are no “systems” capturing this kind of data. But usually, even in very old line companies, there is some place where this data resides. You just have to find it and get access to it.

Often in an environment like this it is easier to work backwards – first, identify defectors, then look for service issues or changes in behavior that imply service issues – declining order size / Frequency, expanding order Latency (weeks between orders) and so forth.

Continue reading LTV Not Just About Sales & Marketing Data: Check Service Problem Outcomes