Category Archives: DataBase Marketing

Optimizing for Customer Value

Jim answers questions from fellow Drillers
(More questions with answers here, Work Overview here, Index of concepts here)


Q: Thank you for creating this useful website!

A: You’re welcome!

Q: When figuring out retention rate for an annual or a 8 months life time cycle period, how do I pick the starting period?  Do I look at their first orders on a date?  Or I pick a time frame such as one month?

A: It depends on:

1. What kind of “retention” you are talking about, the definition, which is probably impacted by the audience for the data

2.  What you will do with the retention data, what kind of decisions will be made and actions be taken because of the data

You should always ask these questions above  when someone requests “retention data” – or any other kind of analysis, for that matter!  For example, there probably is a huge difference in what you would provide to the Board of Directors for an annual benchmark and what you would provide to Marketing people for executing campaigns.

Continue reading Optimizing for Customer Value

Freemium Customer Conversion

Jim answers questions from fellow Drillers
(More questions with answers here, Work Overview here, Index of concepts here)


Q: I was wondering if you’ve done any work with, or given thought to, companies who have a cloud based Freemium business model?

Should they be tracking usage (or anything) at the free level?  Should they be tracking usage at the paid level?  I’m sure defection rates are a big problem, but I’m wondering how many focus on engagement thru mass marketing versus trying to keep what they’ve got, or influence the free users to make the leap to paid.  Any thoughts on this?  Maybe you could do a blog post on it.  It seems like a good fit with your brand of analysis but I’m just starting to think it through…

A: I just finished an analysis that’s a good example of this problem.  Behavior during the Freemium period can predict who is highly likely to become a paying customer, who will need marketing efforts like additional sampling / package discounts, and who will not become a customer no matter what you do.

Continue reading Freemium Customer Conversion

Segmentation by LTD & LifeCycle

Jim answers questions from fellow Drillers
(More questions with answers here, Work Overview here, Index of concepts here)


Q: One of the first things I am doing in my new job is to identify the Customer Lifecycle pattern – how many periods (month, year) will it be before a customer is likely buy again.  In enterprise software industry, where software cost easily 6 figures, # of years is a reasonable time frame.

A: Yes, one would assume this.  But these notions would most likely be based on a feeling of the “average” behavior, and on average, it probably does take a long time.

What is not known is this:  if the “average” is composed of short-cycle and long-cycle buyers, who are the short cycle buyers, and what are they like?  What industry SIC code, for example?  And can we get more of them, or at least focus more resources on them, if they are the most profitable?  So the challenge is not only to look for the “average”, but then understand how this average is composed.  If you can break down the average by industry, or by salesperson, for example, this might be highly directional information.

Q: From my internal analysis, however, I discerned from the sales figures something quite counterintuitive – the period between first and next sale is much shorter than I would have thought for the SW industry in general.

Continue reading Segmentation by LTD & LifeCycle