Tag Archives: Customer State

Measuring dis-Engagement

Engagement Matters – Until it Ends.  Right?

Here’s something that continues to puzzle me about all the efforts around measuring Engagement and using these results as a business metric or model of online behavior.

If Engagement is so important to evaluate – and it can be, depending on how you define it – then doesn’t the termination of Engagement also have to be important?  If you desire to create Engagement, shouldn’t you also care about why / how it fails or ends? And if the end is important, what about how long Engagement lasts as a “quality” metric?

Seems logical the end of Engagement might matter.  Let’s call it dis-Engagement.  Simple concept really: of the visitors / customers that are Engaged today (however you define Engagement), what percent of them are still Engaged a week later?  3 months later?

Whatever dis-Engagement metric you decide to use, a standard measurement would create an even playing field for evaluating the quality of Engagement you create.  From there, a business could invest in approaches producing the most durable outcome.

Since Engagement is almost always defined as an interaction of some kind, tracking dis-Engagement could be standardized using metrics rooted in human behavior.  Recency is one of the best metrics for an idea like this because it’s universal, easy to understand, and can be mapped across sources like products and campaigns.  Recency is also predictive; it provides comparative likelihoods, e.g. this segment is likely more engaged than that one.

Plus, using Recency would align online customer measurement with offline tools and practices.  This could have implications for ideas like defining “current channel”, e.g. customer is now engaged with this channel, has dis-engaged from that channel.

Taking this path brings up a couple of other related ideas, in line with the discussion around customer journey and entwined with the whole customer experience movement.

Peak Engagement

Let’s say there is Engagement, and because we’re now measuring dis-Engagement, we see Engagement end.  So, is Engagement a one-shot state of being, meaning the value should be measured as such?  Or, does longer lasting Engagement have value, and if so, what about when it ends? Shouldn’t we want to find the cause of dis-Engagement?

Continue reading Measuring dis-Engagement

Share:  twittergoogle_plusredditlinkedintumblrmail


Follow:  twitterlinkedinrss

Increase Profit Using Customer State

The following is from the March 2011 Drilling Down Newsletter.  Got a question about Customer Measurement, Management, Valuation, Retention, Loyalty, Defection?  Just ask your question.  Also, feel free to leave a comment and I’ll reply.

Want to see the answers to previous questions?  Here’s the blog archive; the pre-blog newsletter archives are here.

Q: We’ve been playing around with Recency / Frequency scoring in our customer email campaigns as described in your book.  To start, we’re targeting best customers who have stopped interacting with us.  I have just completed a piece of analysis that shows after one of these targeted emails:

1. Purchasers increased 22.9%
2. Transactions increased 69%
3. Revenue increased 71%

A: There you go!

Q: My concern is that what I am seeing is merely a seasonal effect – our revenue peaks in July and August.  So what I should have done is use a control group as you described in the book – which is what I am doing for the October Email.

A: Yep, that’s exactly what control groups are for – to strain out the noise of seasonality, other promotions, etc.  But don’t beat yourself up over it, nothing wrong with poking around and trying to figure out where the levers are first.

Q: Two questions:

1.  What statistical test do I use to demonstrate that the observed changes are not down to chance

2.  How big should my control group be – typically our cohort is 500-800 individuals

A: Good questions…

Continue reading Increase Profit Using Customer State

Share:  twittergoogle_plusredditlinkedintumblrmail


Follow:  twitterlinkedinrss

When Does a Visitor Need a Coupon?

The following is from the November 2010 Drilling Down Newsletter.  Got a question about Customer Measurement, Management, Valuation, Retention, Loyalty, Defection?  Just ask your question.  Also, feel free to leave a comment and I’ll reply.

Want to see the answers to previous questions?  Here’s the blog archive; the pre-blog newsletter archives are here.

Q: First off, I very much appreciate you sharing all this wonderful content on your blog and conferences such as eMetrics.

A: Thanks for that!

Q: My question is a simple one, but I think the answer may be hard: When does a visitor “need” a coupon?  *Need* defined as: visitor would not have placed an order unless presented with the coupon.

A: Hmmm…methinks we’re going to have to define a few concepts and be clear on the goals to make sure we are nailing this down… visitor versus customer, sales versus profit, etc.  In other words, answer is not hard, but could be complex without defining context.

Q: It’s still a mystery to me why so many retailers seem more than willing to hand over all their margins to Groupon or give coupons to basically all visitors.  I am curious whether you would approach this question using  observational data (eg web analytics) or experiments (eg AB testing), or both.

A: Right – is a mystery to me too!

There are certain situations where this approach might be appropriate, but the problem with much web “marketing” (which often is really just advertising without much thought about marketing) is often there is success in a narrow or special situation.  Then the pundits jump on and say “if you’re not doing this you are stupid”, regardless of the business situation and / or without recognizing the special circumstances that are driving success.  This is all the real Marketing stuff people leave out; understanding why it works, under what circumstances, for which segments, involving which products.

Continue reading When Does a Visitor Need a Coupon?

Share:  twittergoogle_plusredditlinkedintumblrmail


Follow:  twitterlinkedinrss

Freemium Customer Conversion

The following is from the October 2010 Drilling Down Newsletter.  Got a question about Customer Measurement, Management, Valuation, Retention, Loyalty, Defection?  Just ask your question.  Also, feel free to leave a comment and I’ll reply.

Want to see the answers to previous questions?  Here’s the blog archive; the pre-blog newsletter archives are here.

Q: I was wondering if you’ve done any work with, or given thought to, companies who have a cloud based Freemium business model?

Should they be tracking usage (or anything) at the free level?  Should they be tracking usage at the paid level?  I’m sure defection rates are a big problem, but I’m wondering how many focus on engagement thru mass marketing versus trying to keep what they’ve got, or influence the free users to make the leap to paid.  Any thoughts on this?  Maybe you could do a blog post on it.  It seems like a good fit with your brand of analysis but I’m just starting to think it through…

A: I just finished an analysis that’s a good example of this problem.  Behavior during the Freemium period can predict who is highly likely to become a paying customer, who will need marketing efforts like additional sampling / package discounts, and who will not become a customer no matter what you do.

Continue reading Freemium Customer Conversion

Share:  twittergoogle_plusredditlinkedintumblrmail


Follow:  twitterlinkedinrss

LTV, RFM, LifeCycles – the Framework

The following is from the May 2010 Drilling Down Newsletter.  Got a question about Customer Measurement, Management, Valuation, Retention, Loyalty, Defection?  Just ask your question.  Also, feel free to leave a comment and I’ll reply.

Want to see the answers to previous questions?  Here’s the blog archive; the pre-blog newsletter archives are here.

Q: I visited your website because I am trying to understand how to develop a customer LifeTime Value model for the company that I work at.  The reason is we are looking at LTV as a way to standardize the ROI measurement of different customer programs.

Not all of these programs are Marketing, some are Service, and some could be considered “Operations”.  But they all touch the customer, so we were thinking changes in customer value might be a common way to measure and compare the success of these programs.

A: Absolutely!  I just answered a question very much like this the other day, it’s great that people are becoming interested in customer value as the cross-enterprise common denominator for understanding success in any customer program!

If I am the CEO, I control dollars I can invest.  How do I decide where budget is best invested if every silo uses different metrics to prove success?  And even worse, different metrics for success within the same silo?

By establishing changes in customer value as the platform for all customer-related programs to be measured against, everyone is on an equal footing and can “fight” fairly for their share of the budget (or testing?) pie.  By using controlled testing, customers can be exposed to different treatments and lift in value can be compared on an apples to apples basis – even if you are comparing the effect of a Marketing Campaign to changes in the Service Center.

Continue reading LTV, RFM, LifeCycles – the Framework

Share:  twittergoogle_plusredditlinkedintumblrmail


Follow:  twitterlinkedinrss

Control Groups in Small Populations

The following is from the January 2010 Drilling Down Newsletter.  Got a question about Customer Measurement, Management, Valuation, Retention, Loyalty, Defection?  Just ask your question.  Also, feel free to leave a comment and I’ll reply.

Want to see the answers to previous questions?  Here’s the blog archive; the pre-blog newsletter archives are here.

Q: Thank you for your recent article about Control Groups.  Our organization launched an online distance learning program this past August, and I’ve just completed some student behavior analysis for this past semester.

Using weekly RF-Scores based on Recently and Frequently they’ve logged in to courses within the previous three weeks, I’m able to assess their “Risk Level”– how likely they are to stop using the program.  We had a percentage who discontinued the program, but in retrospect, their login behavior and changes in their login behavior gave strong indication they were having trouble before they completely stopped using it.

A: Fantastic!  I have spoken with numerous online educators about this application of Recency – Frequency modeling, as well online research subscriptions, a similar behavioral model.  All reported great results predicting student / subscriber defection rates.

Q: I’m preparing to propose a program for the upcoming semester where we contact students by email and / or phone when their login behavior gives indication that they’re having trouble.  My hope is that by proactively contacting these students, we can resolve issues or provide assistance before things escalate to the point they defect completely.

A: Absolutely, the yield (% students / revenue retained) on a project like this should be excellent.  Plus, you will end up learning a lot about “why”, which will lead to better executions of the “potential dropout” program the more you test it.

Continue reading Control Groups in Small Populations

Share:  twittergoogle_plusredditlinkedintumblrmail


Follow:  twitterlinkedinrss

Acting on Buyer Engagement

Over the years I’ve argued that there is a single, easy to track metric for buyer engagement – Recency.  Though you can develop really complex models for purchase likelihood, just knowing “weeks since last purchase” gets you a long way to understanding how to optimize Marketing and Service programs for profit.

Which brings me to the latest Marketing Science article I have reviewed for the Web Analytics Association, Dynamic Customer Management and the Value of One-to-One Marketing, where the researchers find “customized promotions yield large increases in revenue and profits relative to uniform promotion policies”.  And what variable is most effective when customizing promotions?

The researchers took 56 weeks of purchase behavior from an online store, and used the first 50 weeks to construct a predictive model of purchase behavior.   Inputs to the model included Price, presence of Banner Ads, 3 types of promotions, order sizes, number of orders, merchandise category, demographics, and weeks since last purchase (Recency).

The last 6 weeks of data were used to test the predictive power of the model, and the answer to which variable is most predictive of purchase is displayed in the chart below, click to enlarge:

Weeks since last purchase dominated the predictive power of the model, controlling not only the Natural purchase rate (labeled Baseline in chart above, people who received no promotions) but the response to all three different types of promotion.

Continue reading Acting on Buyer Engagement

Share:  twittergoogle_plusredditlinkedintumblrmail


Follow:  twitterlinkedinrss

Member Retention in Professional Orgs

The following is from the October 2009 Drilling Down Newsletter.  Got a question about Customer Measurement, Management, Valuation, Retention, Loyalty, Defection?  Just ask your question.  Also, feel free to leave a comment and I’ll reply.

Want to see the answers to previous questions?  Here’s the blog archive; the pre-blog newsletter archives are here.

Q: I have recently purchased your book Drilling Down and going through the many interesting concepts.

A: Thanks for that!

Q:  I work for a membership Organization and we would like to conduct some analysis into who we may lose and approach them even before their membership lapses.  But the only problem here is that we carry data only on the purchases made (though many of our members do not purchase our products and stay a member) and web site visits.

A:  Are you *sure* that’s all the data you collect?  I once worked with a professional membership org that thought they only had one data source, but turns out they had 8 – from 8 different areas of the org – that nobody really knew about.

Q:  How do I know if a particular member is going to resign and lapse soon with this limited amount of behavioral data.  Recently it’s been a concern that we are losing members who have been with us for more than 10 years and who are in their mid career profession (aged between 30 to 45) and indicated no specific reason for resignation. 

This has been going on for the last few months and now we would like to strategically target these customers and approach them even before they react negative.  What concepts could help me to do this? Your guidance would be much appreciated.

A:  OK, my answer will be in two sections: if you (hopefully) find you have more data than you think, and if you really don’t have any other data to fall back on.

Continue reading Member Retention in Professional Orgs

Share:  twittergoogle_plusredditlinkedintumblrmail


Follow:  twitterlinkedinrss

Lead Scoring and Nurturing

The following Q & A is from the June 2009 Drilling Down Newsletter.

Got a question about Customer Measurement, Management, Valuation, Retention, Loyalty, Defection?  Just ask your question.  Also, Feel free to leave a comment.  Want to see the answers to previous questions?  Here’s the blog archive; the pre-blog newsletter archives are here.

Q: I received this article (Norms of Reciprocity, measuring value of Social Marketing) via a friend’s Twitter account.  Very interesting.

A:  Glad you enjoyed it!

Q:  It has made open up my ACT! database, and my Outlook databases and add the metric of Growing / Strong / Weakening / Failed to my normal Sales and Business progress metrics.  If I group those categories and correlate to traditional metrics, it’s impressive how they reflect each other.

A:  Yes, most people are surprised.  It’s a very, very simple idea that seems to work across just about any human activity including crime, attendance, and so forth.  

The more Recently someone has done something, the more likely they are to do it again.  Conversely, the longer since an activity last took place, the less likely the person will do it again.  Often called Recency in Psychology and studied quite a bit.

Q:  Now I have to think about how I really use and apply this. : )

A:  Well, if I can guess you are in Sales from your title, typically one of the best applications is in what Strategic Marketing folks might call “allocation of resources”, which probably translates into “lead nurturing” for you.

Continue reading Lead Scoring and Nurturing

Share:  twittergoogle_plusredditlinkedintumblrmail


Follow:  twitterlinkedinrss

Norms of Reciprocity

Social Marketing Doesn’t Rely on Social Media

Do you believe human beings share certain fundamental traits that define “being human”?

If so, do you believe that human beings tend to behave in certain ways under certain circumstances?

If so, do you then believe since human behavior has these tendencies, it can often be predicted?

If so, then do you think perhaps the study of Psychology and Sociology might provide you some clues to creating successful businesses, campaigns, products, and services?  While your friends and competitors are all iterating their way into oblivion?

On the web, time and time again, we see the same themes repeating.  Yet with each introduction of a new technology, these themes tend to be treated like a new discovery, even though the theme has been well established in the past.

Norms of Reciprocity is a constant human theme.  You may know the expression of these norms as “Sharing”.  Web old timers will probably recognize this idea as “Give, then Take” from the I-Sales discussion list as early as 1995.  In various forms, this theme goes back to the beginning of human history, all the way back to the handshake and other greeting gestures.  This same theme is embedded in countless Religions all over the world: “Do onto others as you would wish them do onto you”.  At least a couple centuries old, this idea.

Norms of Reciprocity simply means this: When you do something nice for a human being, help them in some way, this human tends to feel Gratitude towards “the doer” and tends to do something nice back.  Gratitude drives the desire to Reciprocate, because it’s just what humans do, it’s normal, a “norm”.

Norms of Reciprocity.

Continue reading Norms of Reciprocity

Share:  twittergoogle_plusredditlinkedintumblrmail


Follow:  twitterlinkedinrss