Category Archives: DataBase Marketing

Measuring dis-Engagement

Engagement Matters – Until it Ends.  Right?

Here’s something that continues to puzzle me about all the efforts around measuring Engagement and using these results as a business metric or model of online behavior.

If Engagement is so important to evaluate – and it can be, depending on how you define it – then doesn’t the termination of Engagement also have to be important?  If you desire to create Engagement, shouldn’t you also care about why / how it fails or ends? And if the end is important, what about how long Engagement lasts as a “quality” metric?

Seems logical the end of Engagement might matter.  Let’s call it dis-Engagement.  Simple concept really: of the visitors / customers that are Engaged today (however you define Engagement), what percent of them are still Engaged a week later?  3 months later?

Whatever dis-Engagement metric you decide to use, a standard measurement would create an even playing field for evaluating the quality of Engagement you create.  From there, a business could invest in approaches producing the most durable outcome.

Since Engagement is almost always defined as an interaction of some kind, tracking dis-Engagement could be standardized using metrics rooted in human behavior.  Recency is one of the best metrics for an idea like this because it’s universal, easy to understand, and can be mapped across sources like products and campaigns.  Recency is also predictive; it provides comparative likelihoods, e.g. this segment is likely more engaged than that one.

Plus, using Recency would align online customer measurement with offline tools and practices.  This could have implications for ideas like defining “current channel”, e.g. customer is now engaged with this channel, has dis-engaged from that channel.

Taking this path brings up a couple of other related ideas, in line with the discussion around customer journey and entwined with the whole customer experience movement.

Peak Engagement

Let’s say there is Engagement, and because we’re now measuring dis-Engagement, we see Engagement end.  So, is Engagement a one-shot state of being, meaning the value should be measured as such?  Or, does longer lasting Engagement have value, and if so, what about when it ends? Shouldn’t we want to find the cause of dis-Engagement?

Continue reading Measuring dis-Engagement

Share:  twittergoogle_plusredditlinkedintumblrmail


Follow:  twitterlinkedinrss

Marketing Responsible for Customer Experience?

 The Data

According to this survey, Marketers are not now really “responsible”  for the customer experience (whatever responsible means in this context) but will be over the next 3 years.  If it was just the vendor (Marketo) trumpeting this idea, I’d be more skeptical.  But this vendor hired the Intelligence Unit from The Economist organization to do this work and the report includes the actual questions, meaning you can check for bias.  Population is 478 CMO’s and senior marketing executives worldwide, seems decent / not cherry-picked.

So I will cut the vendor some slack.   Questions though, right?  Just what is customer experience, in particular for the purposes of success measurement?  How does it fit with related ideas like Customer Journey / LifeCycle and Engagement?  Certainly if the above is a significant macro trend we ought to sort this all out first?  And of course, putting some analytical rigor (structure, process, and definitions?) in place to support the effort ;)

The Story

I know a lot of marketing people who have either had this authority for years (multi-channel database marketing) or are moving in this direction, so the results make sense to me.  To be clear(er), “experience” for these people reaches all the way back from UX into fulfillment and service.  So when they talk about experience, they are talking visitor and customer; not just navigation and landing pages, but also shipping times and return rates.

Perhaps increased access to customer data is revealing the significant impact customer experience in this larger sense has on long-term customer value?  This idea, coupled with increased focus on accountability (also covered in the survey) could be driving this trend.

Worth the read, only 20 pages long with a lot of charts.  Here’s 4 snippets to hook you:

Continue reading Marketing Responsible for Customer Experience?

Share:  twittergoogle_plusredditlinkedintumblrmail


Follow:  twitterlinkedinrss

Do NPS / CES Feedback Metrics Predict Retention? Depends…

Survey Says?

Several questions came in on the ability of surveys to predict actual behavior, covered in the post Measuring the $$ Value of Customer Experience (see 2. Data with Surveys). My advice is this: if you are interested in taking action on survey results, make sure to survey specific visitors / people with known behavior if possible, then track subjects over time to see if there is a linkage between survey response and actual behavior.  You should do this at least the first time out for any new type of survey you launch.

Why?  Many times, you will find segments don’t behave as they say they will.  In fact, I have seen quite a few cases where people do the opposite of what was implied from the survey.  This happens particularly frequently with best customers – the specific people you most want to please with modifications to product or process.   So this is important stuff.

You’ve Got Data!

Turns out there’s a new academic (meaning no ax to grind) research study out addressing this area, and it’s especially interesting because the topic of study is ability of customer feedback metrics to predict customer retention.  You know, Net Promoter Score, Customer Effort Score and so forth, as well as standard customer satisfaction efforts like top-2-box.

The authors find the ability of any of one of these metrics to predict customer retention varies dramatically by industry.  In other words, you might want to verify the approach / metric you are using by tying survey response to actual retention behavior over time.

Continue reading Do NPS / CES Feedback Metrics Predict Retention? Depends…

Share:  twittergoogle_plusredditlinkedintumblrmail


Follow:  twitterlinkedinrss

Measuring the $$ Value of Customer Experience

 Marketing IS (Can Be?) an Experience

Early on I discovered something from the work of leaders in data-based marketing business models: they were always very concerned with post-campaign execution – not only from marketing, but also through product, distribution, and service.  I thought this strange, until I realized they knew something I did not: when you have customer data, you can actually identify and fix negative customer value impacts caused by poor experience.

This means you can directly quantify the value of customer experience, budget for fixing it, and create a financial model that proves out the bottom line hard money profits (or losses) from paying attention to the business value as a result of customer experience.

And critically, this idea becomes much more important as you move from surface success metrics like conversion and sales down into deep success metrics like company profits. Frequently you see the profit / loss from “marketing” often has less to do with campaigns and more to do with the positive or negative experiences caused by campaigns.

Examples

You might think taking the time to provide special treatment to brand new customers would always encourage engagement and repeat purchase.  You’d be wrong.  Sometimes this works, sometimes this does not work, depending on the context of the customer.  Does it surprise you to find out customers often do not want to be “delighted”?

Continue reading Measuring the $$ Value of Customer Experience

Share:  twittergoogle_plusredditlinkedintumblrmail


Follow:  twitterlinkedinrss

Omni-Channel Cost Shifting

One of the great benefits customer lifecycle programs bring to the party is unearthing cross-divisional or functional profitability opportunities that otherwise would fall into the cracks between units and not be addressed.  What I think most managers in the omni-channel space may not realize (yet) is how significant many of these issues can be.

To provide some context for those purely interested in the marketing side, this idea joins quite closely to the optimizing for worst customers and sales cannibalization discussions, but is more concerned with downstream operational issues and finance.  Cost shifting scenarios will become a lot more common as omnichannel concepts pick up speed.

Shifty Sales OK, Costs Not?

Why is cost shifting important to understand?  Many corporate cultures can easily tolerate sales shifting between channels because of the view that “any sale is good”.  On the ground, this means sourcing sales accurately in an omni-channel environment requires too much effort relative to the perceived benefits to be gained.  Fair enough; some corporate cultures simply believe any sale is a good sale even if they lose money on it!

Cost shifting  tends to be a different story though, because the outcomes show up as budget variances and have to be explained.  In many ways, cost shifting is also easier to measure, because the source is typically simple to capture once the issue surfaces.  And as a cultural issue, people are used to the concept of dealing with budget variances.

Here’s a common case:

Continue reading Omni-Channel Cost Shifting

Share:  twittergoogle_plusredditlinkedintumblrmail


Follow:  twitterlinkedinrss

Marketing Funnel Not Dead, Using Funnel Model for Attribution Is

It’s become fashionable to declare the “Marketing Funnel Model” dead.

For example, here is a post worth reading on this topic by Rok Hrastnik.  There are some very good points in this post on why using a funnel to attribute media value is really a troubled idea.  I was flagged on this post because it has a quote from me that seems to support Rok’s thesis about the death of the funnel model and the related idea, “Direct Response Measurement is a Wet Dream”.   The quote is from a comment I made on a post by Avinash where we were discussing the value of sequential attribution models:

There are simply limits on what can be “proven” given various constraints, and that’s where experience and a certain amount of gut feel based on knowledge of customer kick in.  If you can’t measure it properly, just say so. So much damage has been done in this area by creating false confidence, especially around the value of sequential attribution models where people sit around and assign gut values to the steps.  Acting on faulty models is worse than having no information at all.

But none of this means the Funnel Model is dead, or that Direct Response Measurement overall is a Wet Dream.  What’s (hopefully) dead is  people using the funnel model inappropriately for tasks it was never designed for, in this case multi-step attribution of media value to goal achievement.  On the other hand, if this specific funnel use case is what Rok was coming after, I agree, because it didn’t make any sense to use a funnel model for this idea in the first place.

Let’s unpack these ideas

Funnel thinking is based on a relatively reliable model of human behavior, AIDA.  This model from human psychology does not specify tools, channels, or media.  It simply says that there is a path to purchase most humans follow.  That is:

A – Attention: (Awareness): attract the attention of the customer
I – Interest:  (Intent) promote advantages and benefits
D – Desire: convince customers the product will satisfy their needs
A – Action: lead customers towards taking action / purchace

Example:  I’m Aware of tons of products I would never buy.  There are lots of products I think are Interesting but I have no Desire for.  There’s a short list of products I Desire but have not Acted on.  The list of products in my head worthy of purchase consideration gets smaller and smaller at each stage of the AIDA model.  This is the funnel.

The AIDA funnel has not changed and it’s not dead.

It’s a model of human behavior, not media consumption.

Continue reading Marketing Funnel Not Dead, Using Funnel Model for Attribution Is

Share:  twittergoogle_plusredditlinkedintumblrmail


Follow:  twitterlinkedinrss

Marketing to Focus on Customer. Analytics?

It’s been very popular among marketing types to talk about “the customer” but seek metrics for affirmation other than those based on or derived from the customer.  Web analysts have followed their lead, and provided Marketers plenty of awareness, engagement, and campaign metrics.  As I’ve said in the past, this is a huge disconnect.  Does it make sense (analytically) to have discussions about customer centricity,  customer experience, customer service, the social customer, etc.  and measure these effects at the impression or visit level?

Is someone who visits or purchases or comments one time really a customer, for the purposes of analyzing “centricity” ideas and concepts?  I think not.  Visit metrics simply don’t work for understanding these customer concepts, because by definition they unfold over time, not as single events.   Add in the fact most web activity is 1x in nature – even buyers – and you begin to realize that analyzing “traffic” yields very little in the way of “customer” insight.

From a Marketing perspective, hey, happy to have the 1x revenue, but these are interactions I’m not really excited about increasing spend on, knowing they will be a one-night stands.  This is especially true when you also know re-allocating some of the funds spent on the 90% 1x-ers to the other 10% could double company profits!

If you have followed my writings over the past 12 years, none of the above perspective is new.  What might be changing is this: more people in the online world are beginning to think the same way.

Continue reading Marketing to Focus on Customer. Analytics?

Share:  twittergoogle_plusredditlinkedintumblrmail


Follow:  twitterlinkedinrss

“Missing” Social Media Value

I have no doubt there is some value in social beyond what can be measured, as this has been the case for all marketing since it began ;)  The problem is this value is often situational, not too mention not properly measured using an incremental basis (as you point out).
For example,  to small local businesses who do no other form of advertising, there is a huge amount of relative value to using social media, versus no advertising at all.  Some advertising is much better than none, and since it’s free, the incremental value created by (properly) using social is huge.
On the other hand, I wonder why social analysis seems to forget that people have to be aware of you to “Like” you in the first place.  Further, it seems unlikely a person would “Like” a brand or product if they have not already experienced it, and are already a fan.  If this is not true, if people “Like” a company even thought they do not (paid to Like?), then the problems with social go way beyond analysis…
But if true, , the number of “Likes” doesn’t have as much to do with awareness as it does with size of customer base, and is much more aligned with tracking customer issues (retention, loyalty) than anything to do with awareness / acquisition.
Add the fact many companies are running lots of advertising designed to create awareness, and the incremental value of social as a “media” may be close to zero, or at least less than the cost to analyze the true value of it.
And this last, really, is the core of the issue.  It’s simply not possible to measure “all” the value created by any kind of marketing, and there are hugely diminishing returns as you try to capture the last bits.  I think it’s quite possible the optimism for “value beyond what can be measured” is less than the cost of measuring it *if* people keep looking in the awareness / acquisition field.
Folks who want to find this “missing” social value should start doing customer analysis, and look in the “retention / loyalty” area, where the whole idea of social is a natural, rather than a forced, fit.

Has to be There

I find it really interesting that whenever there is a discussion of measuring the value of social media, there’s such a bias towards believing there is value in social beyond what can be properly measured.  See the comments following this post by Avinash for a good example.  Speculation is fine, but the confidence being expressed that a new tool or method will uncover a treasure trove of social media value seems un-scientific (as in scientific method) at best.

I don’t doubt there is some value in social media beyond what can be measured, as this has been the case for all marketing since marketing measurement began.  These measurement problems are not new to social either:  Marketing value created is often situational, it depends on the business model and environment.  What works in one situation may not work in another.

For example:

To small local businesses who do no other form of advertising, there is a huge amount of relative value to using social media versus no advertising at all.  Social advertising is much better than none, and since it’s free, the incremental value created by (properly) using social is huge.  It’s also really easy to measure the impact and true value, since the baseline control is “no advertising”.  Lift, or actual net marketing performance, can be pretty obvious in his case.

On the other hand, many companies are running lots of advertising designed to create awareness, and the incremental value of social as a “media” may be close to zero for these companies, or at least less than the cost to analyze the true value of it.  Possible explanation:  Social events such as “Likes” or comments are simply representations or affirmations of awareness already created by other media, so by themselves, create little value.  In other words, events such as Likes might track the value of other media spending, but may not create much additional marketing value.

Continue reading “Missing” Social Media Value

Share:  twittergoogle_plusredditlinkedintumblrmail


Follow:  twitterlinkedinrss

Defining Behavioral Segments

The following is from the April 2011 Drilling Down Newsletter.  Got a question about Customer Measurement, Management, Valuation, Retention, Loyalty, Defection?  Just ask your question.  Also, feel free to leave a comment and I’ll reply.

Want to see the answers to previous questions?  Here’s the blog archive; the pre-blog newsletter archives are here.

Q: I purchased your book and have a few questions you can hopefully help me out with.

A: Thanks for that, and sure!

Q: We have 4 product lines and 2 of them are seasonal. i.e we have customers that year in year out purchase these items consistently but seasonally, for example, every spring and summer.  Then they are dormant for Fall and Winter.  Should I include these customers along with everyone else when doing an RFM segmentation?

A: Well, it kind of depends what you will using the RF(M) model for, what kinds of marketing programs will be activated by using the scores. If you know you have seasonal customers and their habit is to buy each year, AND you wish to aim retention or reactivation programs at them, I would be tempted to divide the customer base so that seasonal customers are their own segment.  Then run two RF(M)  models – one for the seasonals, and one for everyone else.

Q: If I include seasonal customers, and I run RFM say on a monthly basis, these seasonal customers will climb / fall drastically with time depending on the season, so it seems like it may complicate the scoring process.

A: Sure, and you could segment as I said above.  Or, you could run across a longer time frame, say across 2 – 3 years worth of data. This would “normalize” the two segments into one and take account of the seasonality in the scoring – perhaps be more representative of the business model.  However, the scores would become less sensitive due to the long time frame so the actions of customers less accurately predicted by the model.

Q: Can you provide me with some examples as to how segmentation is carried out?  Let’s say I being with RFM and all my customers are rated 5-5, 5-4, 4-5 etc.  What are the next steps, do we overlay with other characteristics like age, gender, etc?  Or are the 5-3 etc. our actual segments?

A: This goes back to what you want to use the RF(M) model for.  In the standard usage, each score will have roughly the same number of customers in it, those with higher scores will be more likely to respond to marketing and purchase, lower scores less likely.

Continue reading Defining Behavioral Segments

Share:  twittergoogle_plusredditlinkedintumblrmail


Follow:  twitterlinkedinrss

Increase Profit Using Customer State

The following is from the March 2011 Drilling Down Newsletter.  Got a question about Customer Measurement, Management, Valuation, Retention, Loyalty, Defection?  Just ask your question.  Also, feel free to leave a comment and I’ll reply.

Want to see the answers to previous questions?  Here’s the blog archive; the pre-blog newsletter archives are here.

Q: We’ve been playing around with Recency / Frequency scoring in our customer email campaigns as described in your book.  To start, we’re targeting best customers who have stopped interacting with us.  I have just completed a piece of analysis that shows after one of these targeted emails:

1. Purchasers increased 22.9%
2. Transactions increased 69%
3. Revenue increased 71%

A: There you go!

Q: My concern is that what I am seeing is merely a seasonal effect – our revenue peaks in July and August.  So what I should have done is use a control group as you described in the book – which is what I am doing for the October Email.

A: Yep, that’s exactly what control groups are for – to strain out the noise of seasonality, other promotions, etc.  But don’t beat yourself up over it, nothing wrong with poking around and trying to figure out where the levers are first.

Q: Two questions:

1.  What statistical test do I use to demonstrate that the observed changes are not down to chance

2.  How big should my control group be – typically our cohort is 500-800 individuals

A: Good questions…

Continue reading Increase Profit Using Customer State

Share:  twittergoogle_plusredditlinkedintumblrmail


Follow:  twitterlinkedinrss